15- Master the Art of Data Visualization with Animated Graphs in R Programming

15- Master the Art of Data Visualization with Animated Graphs in R Programming

Looking for ways to create animated graphs in R programming? Check out this tutorial that provides step-by-step instructions on how to use various R libraries to create animated timelines, scatterplots, boxplots, violin plots, and more. You'll also find downloadable datasets and GIFs showcasing the final products. Whether you're a data scientist, researcher, or student, this guide can help you enhance your data visualization skills and impress your audience.

Download the used datasets in the tutorial:

Animated timeline

Load libraries

library(ggplot2)
library(gganimate)
library(tidyr)
library(tidyverse)
library(RColorBrewer)
library(rgeos)
library("sf")
library("rnaturalearth")
library("rnaturalearthdata")
library(lubridate)
library(ggExtra)
library(magick)
library(av)

Animated wind timeline using 'airquality' data:

#View(airquality)
month<- factor(airquality$Month)
p <- ggplot(airquality,aes(Day, Wind, group = Month, color = month)) +
  geom_line(lwd=1.3) +
  geom_point(size=3)+
  theme_bw()+
  scale_color_viridis_d() +
  labs(x = "Day of Month", y = "Wind") +
  theme(legend.position = "top")
p
p + transition_reveal(Day)

animated_wind.gif

Animated rain timeline:

Load data:

df <- read.csv('D://R4Researchers//Erbil_Rain_Annual.csv')
#View(df)

Convert wide to long dataframe:

dflong <- gather(df, Station, Rain, Qushtapa:Shorsh)

Create graph:

p1<- ggplot(dflong, aes(x=year,y=Rain,color=Station, group=Station))+
  geom_line(lwd=1.3, show.legend = T)+
  geom_point(size=3, show.legend = T) +
  theme_bw()+
  xlab('Year')+
  ylab('Rain (mm)')
p1

Animate plot using transition_reveal() function:

anim<- p1 + transition_reveal(year)
animate(anim, height = 400, width =600)

Save the graph:

anim_save("animate_prece_Erbil_new_400&600.gif")

animate_prece_Erbil_new_400&600.gif

Animated geom_col

Import data:

da<-read.csv("D:\\R4Researchers\\LULC_Change.csv")
da1<- da[,1]
da2<- da[,2]
da3<- da[,3]
da3 <- as.factor(da3)

Create the graph using 'geom_col':

p <- ggplot(da, aes(x = da1, y = da2)) +
  geom_col(aes( fill = Class), position = position_dodge(0.8), width = 0.7,show.legend =F) +
  xlab("Land use/cover category")+
  ylab("% of area")+
  theme_bw() 
p

Add text to the graph:

p1<- p + geom_text(data = da,
         aes(x = da1, group=da3, y = da2+2, 
         label = format(da2, nsmall = 0, digits=3, scientific = FALSE)), 
         color="black", position=position_dodge(.8), hjust=.5)

Animate the graph using transition_states() function:

anim<- p1 + transition_states(year, wrap = T)+
  labs(title = "Year: {closest_state}", y = 'Class %', x= 'Class')

animate(anim, height = 400, width =600)
anim_save("animate_barplot_LULC_Change_new.gif")

animate_barplot_LULC_Change_new.gif


df <- read.csv('D://R4Researchers//Climatic_Variables_and_Lag7R0_Australia.csv')

p1<-ggplot(df)+
  geom_col(aes(y= lag7R0, x=area , fill =area),show.legend = F) + theme_bw()+
  theme(axis.text.x = element_text(angle = 45,hjust = 1))
p1

anim<- p1 + transition_time(month) +
  labs(title = "Month: {frame_time}", y = 'R0 COVID-19', x= 'States')
anim

anim_save("animate_boxplot_covid_Australia.gif")

animate_geom_col_covid_Australia.gif

Animated boxplot

Load data:

dt <- read.csv('D://R4Researchers//Climatic_Variables_and_Lag7R0_Australia.csv')

Create boxplot:

p1<-ggplot(dt)+
  geom_boxplot(aes(y= lag7R0, x=area , fill =area),show.legend = F) +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 45,hjust = 1)) +
  coord_cartesian(ylim = c(0,32.2))
p1

Animate the plot using transition_time() function:

anim<- p1 + transition_time(month) +
  labs(title = "Month: {frame_time}", y = 'R0 COVID-19', x= 'States') # using frmae_time for title
animate(anim, height = 400, width =600)

Save the gif:

anim_save("animate_boxplot_covid_Australia.gif")

animate_boxplot_covid_Australia.gif

Animated violin

View mtcars data as table:

View(mtcars)
CYL <- factor(mtcars$cyl)

Create the graph:

p1 <- ggplot(mtcars, aes(CYL, mpg))+
  geom_violin(aes(fill = CYL))+
  theme_bw()+
  theme(legend.position = "top")
p1

Animate the graph with transition_states() function:

anim<- p1 + transition_states(gear,transition_length = 3, state_length = .5, wrap = T) +
  labs(title = "Gear: {closest_state}", y = '', x= '')
animate(anim, height = 600, width =600)

Save the gif:

anim_save("animate_geom_violin.gif")

animate_geom_violin.gif

Animated jitter plot

df <- read.csv('D://R4Researchers//Climatic_Variables_and_Lag7R0_Australia.csv')

p1<-ggplot(df)+
  geom_jitter(aes(y= lag7R0, x=area , colour =area),show.legend = F) + theme_bw()+
  theme(axis.text.x = element_text(angle = 45,hjust = 1))
p1

anim<- p1 + transition_time(month) +
  labs(title = "Month: {frame_time}", y = 'R0 COVID-19', x= 'States')
animate(anim, height = 400, width =600)

anim_save("animate_geom_jitter_covid_Australia.gif")
b <- animate(anim, duration = 20, fps = 20, renderer = av_renderer())
anim_save("animate_geom_jitter.mp4", b) # save as mp4

animate_geom_jitter_covid_Australia.gif

Animated geom_count

df <- read.csv('D://R4Researchers//Climatic_Variables_and_Lag7R0_Australia.csv')

p1<-ggplot(df)+
  geom_count(aes(y= lag7R0, x= area, colour=area),show.legend = F) + theme_bw()+
  scale_size_area()+
  theme(axis.text.x = element_text(angle = 45,hjust = 1))#+
#coord_cartesian(ylim = c(0,20))
p1
anim<- p1 + transition_time(month) +
  labs(title = "Month: {frame_time}", y = 'R0 COVID-19', x= 'States')
anim

anim_save("animate_geom_count_covid_Australia.gif")

animate_geom_count_covid_Australia.gif

Multiple area animated scatterplot

df <- read.csv('D://R4Researchers//Climatic_Variables_and_Lag7R0_Australia.csv')
lag <- df$lag7R0*3

p1<- ggplot(df)+
  geom_point(aes( air_temp,lag7R0,size= lag, color = area),alpha = 0.7, show.legend = T)+ theme_bw()#+
p1

anim<- p1 + transition_time(month) +
  labs(title = "2020/ {frame_time}", x = 'Air Temperature', y= 'Lag7 day R0 COVID-19')+
  enter_fade() +
  facet_wrap(~area) #Use area to create multiple scatterplot

anim1<- animate(anim, fps=2, height = 450, width =700) # select height, width and speed frame per second 'fps:2'
anim1

anim_save("animate_sactterplot_Australia_Tempwrature.gif")

animate_sactterplot_Australia_Tempwrature.gif

Animated scatterplot

df <- read.csv('D://R4Researchers//Climatic_Variables_and_Lag7R0_Australia.csv')

p2<- ggplot(df)+
  geom_point(aes( air_temp,lag7R0,size= lag7R0, color = area),alpha = 0.7, show.legend = T)+ theme_bw()
p2

pp2<- p2 + transition_time(month) +
  labs(title = "Month: {frame_time}", x = 'Air Temperature', y= 'Lag7 day R0 COVID-19')+
  enter_fade() +
  exit_fade()

anim1<- animate(pp2, fps=2, height = 450, width =700)

anim_save("animate_sactterplot_Australia_Tempwrature_one.gif")

animate_sactterplot_Australia_Tempwrature_one.gif

Animated map


world <- ne_countries(scale = "medium", returnclass = "sf")
#View(world)

gg<- ggplot(data = world) +
 # geom_sf(aes(fill = gdp_md_est)) +
  geom_sf(aes(fill = pop_est)) + #give different color to pop_est
  scale_fill_viridis_c(option = "plasma", trans = "sqrt")
gg

anim <- gg +  transition_manual(frames = income_grp, cumulative = F)+ #transition by incom_grp
  labs(title = "Income_grp: {frame}")+ 
  enter_fade() + 
  exit_shrink()

animate(anim, height = 400, width =600)
anim_save("animate_geom_map_pop_Income.gif")

animate_geom_map_pop_Income.gif

Animated linerange


df <- read.csv('D://R4Researchers//Climatic_Variables_and_Lag7R0_Australia.csv')
std <- function(x) sd(x)/sqrt(length(x))

dt<- df %>%
  group_by(area) %>%
  summarize(mean_lag = mean(lag7R0, na.rm=T), tt=std(lag7R0), month= month)
dt
df1<- df %>% mutate(dt)
#View(df1)

p1 <- ggplot() + 
  geom_linerange(data=df1, mapping=aes(x=area, ymin=mean-tt, ymax=mean+tt, colour=area),show.legend = F) + 
  geom_point(data=dt, mapping=aes(x=area, y=mean, colour=area),show.legend = F) +
  theme_bw()+
  theme(axis.text.x = element_text(angle = 45,hjust = 1))
p1

anim<- p1 + transition_time(month) +
labs(title = "Month: {frame_time}", y = 'Mean R0 COVID-19', x= 'States')
anim
#View(df1)
animate(anim,fps = 4, height = 400, width =600)

anim_save("animate_geom_linerange_Australia.gif")

animate_geom_linerange_covid_Australia.gif

Animated bin hex


df <- read.csv('D://R4Researchers//Climatic_Variables_and_Lag7R0_Australia.csv')

p <- ggplot(df, aes(x=air_temp, y = ws))+
  stat_bin_hex(bins=10) +
  scale_fill_gradientn(colors = brewer.pal(3,"Greens")) +
  theme_classic() +
  theme(legend.position = "top")
p

anim <- p + transition_time(month) +
  labs(title = "Month: {frame_time}", x = 'Air temperature (c)', y= 'Wind speed (m/s)')

animate(anim,fps = 2, height = 400, width =600)
anim_save("animate_stat_bin_hex_Australia.gif")

animate_stat_bin_hex_Australia.gif

Animated dotplot

df <- read.csv('D://R4Researchers//Climatic_Variables_and_Lag7R0_Australia.csv')

p1<- ggplot(df, aes(y = air_temp,x= ws, fill = area),show.legend = F, alpha=0.6) +
  geom_dotplot(binwidth = 1.5, binaxis = "y", stackdir = "center", position = "dodge", drop=T, dotsize = 0.5, alpha=0.6)+
  theme_bw()
p1

anim<- p1 + transition_time(month) +
  labs(title = "Month: {frame_time}", x = 'Wind speed (m/s)', y= 'Air temperature(c)')
animate(anim, height = 500, width =500)

anim_save("animate_geom_dotplot_Australia.gif")

animate_geom_dotplot_Australia.gif

Animated geom_segment


# Dataset 1: one value per group
data <- data.frame(
  name=c("north","south","south-east","north-west","south-west","north-east","west","east"),
  val=sample(seq(1,10), 8 )
)

p1<-data %>%
  arrange(val) %>%
  mutate(name = factor(name, levels=c("north", "north-east", "east", "south-east", "south", "south-west", "west", "north-west"))) %>%
  ggplot( aes(x=name, y=val)) +
  geom_segment( aes(xend=name, yend=0)) +
  geom_point( size=4, color="orange") +
  theme_bw()

p1

anim<- p1 + transition_reveal(val)+
  labs(y = 'Value', x= 'Direction')
anim

anim_save("animated_geom_segment.gif")

animated_geom_segment.gif

Animated pie chart

#Load data:
df<-read.csv("D:\\R4Researchers\\LULC_Change.csv")
df

# Create piechart:
bp<- ggplot(df, aes(x="", y=percent, fill=Class))+
  geom_bar(width = 1, stat = "identity")+
  theme_bw()+ 
  geom_text(aes(label = paste0(round(percent, 1), "%")), color = "white", 
            position = position_stack(vjust = 0.5), fontface = "bold")+
  xlab('')+
  ylab('')
bp
pie <- bp + coord_polar("y", start=0)
pie

# Animate the graph:
anim<- pie + transition_time(year) + labs(title = "Year: {frame_time}") 
anim

#Save gif:
anim_save("animate_pie_chart_LULC_Chane.gif")

animate_pie_chart_LULC_Chane_500_500.gif

In conclusion, this tutorial provides step-by-step instructions on how to use various R libraries to create animated graphs such as timelines, scatterplots, boxplots, violin plots, and more. It also includes downloadable datasets and GIFs showcasing the final products. Whether you're a data scientist, researcher, or student, this guide can help you enhance your data visualization skills and impress your audience.

If you enjoy the content, please consider subscribing to my YouTube channel for future updates.

To access video tutorials and receive a certificate, enroll in my Udemy course.

Did you find this article valuable?

Support SmartRS by becoming a sponsor. Any amount is appreciated!